Портал презентаций » Презентации по Геометрии » Применение подобия к доказательству теорем и решению задач

Применение подобия к доказательству теорем и решению задач

Применение подобия к доказательству теорем и решению задач - Скачать школьные презентации PowerPoint бесплатно | Портал бесплатных презентаций school-present.com
Смотреть онлайн
Поделиться с друзьями:
Применение подобия к доказательству теорем и решению задач:
Презентация на тему Применение подобия к доказательству теорем и решению задач к уроку по геометрии

Презентация "Применение подобия к доказательству теорем и решению задач" онлайн бесплатно на портале электронных презентаций school-present.com

Применение подобия к доказательству теорем и решению задач
1 слайд

Применение подобия к доказательству теорем и решению задач

Цели урока: Ввести определение средней линии треугольника. Сформулировать и доказать теорему о средн
2 слайд

Цели урока: Ввести определение средней линии треугольника. Сформулировать и доказать теорему о средней линии треугольника. Рассмотреть решение задач на применение доказанной теоремы. Рассмотреть решение задачи о свойстве медиан треугольника.

Ход урока Решение задач по готовым чертежам. Изучение нового материала. Закрепление изученной темы.
3 слайд

Ход урока Решение задач по готовым чертежам. Изучение нового материала. Закрепление изученной темы. Итоги урока Домашнее задание

Решение задач AO:OC =BO:OD. Докажите, что ABCD - трапеция.
4 слайд

Решение задач AO:OC =BO:OD. Докажите, что ABCD - трапеция.

Решение задач По второму признаку подобия треугольников ABO подобен COD, Поэтому угол BAO = углу OCD
5 слайд

Решение задач По второму признаку подобия треугольников ABO подобен COD, Поэтому угол BAO = углу OCD, тогда AB || DС. Значит ABCD – трапеция.

Решение задач М и N – середины сторон AB и BC. Докажите, что MN || AC.
6 слайд

Решение задач М и N – середины сторон AB и BC. Докажите, что MN || AC.

Решение задач По второму признаку подобия треугольников ABC подобен MBN, поэтому угол BMN = углу ABC
7 слайд

Решение задач По второму признаку подобия треугольников ABC подобен MBN, поэтому угол BMN = углу ABC, а значит MN||AC.

Объяснение нового материала Определение средней линии треугольника. Теорема о средней линии треуголь
8 слайд

Объяснение нового материала Определение средней линии треугольника. Теорема о средней линии треугольника.

Закрепление изученного материала № 564 (устно) № 567 № 1 № 570
9 слайд

Закрепление изученного материала № 564 (устно) № 567 № 1 № 570

Решение задачи № 567 MN – средняя линия ABD MN||DB и MN = ½ DB. PQ – средняя линия CBD PQ || DB и PQ
10 слайд

Решение задачи № 567 MN – средняя линия ABD MN||DB и MN = ½ DB. PQ – средняя линия CBD PQ || DB и PQ = ½ DB. Значит MN || DB и PQ || DB. Следовательно MN || PQ и MN = PQ = ½ DB. Значит четырёхугольник MNPQ – параллелограмм

Решение задачи № 570 Треугольник AMO подобен треугольнику CDO по двум углам (MAO = DCO и AOM = COD)
11 слайд

Решение задачи № 570 Треугольник AMO подобен треугольнику CDO по двум углам (MAO = DCO и AOM = COD) AO/OD = AM/DC = ½.

Итог урока Если AM = MB и MN = NC, то MN || BC, MN = ½ BC. AA1, CC1, BB1 – медианы треугольника ABC.
12 слайд

Итог урока Если AM = MB и MN = NC, то MN || BC, MN = ½ BC. AA1, CC1, BB1 – медианы треугольника ABC. BO/B1O = AO/A1O = CO/C1) = 2/1.

Домашнее задание Вопросы стр. 154: 8, 9. № 565 № 566 № 571
13 слайд

Домашнее задание Вопросы стр. 154: 8, 9. № 565 № 566 № 571

Литература Л. С. Атанасян и другие «Геометрия» Учебник для 7 – 9 классов. Москва просвещение 2002г Л
14 слайд

Литература Л. С. Атанасян и другие «Геометрия» Учебник для 7 – 9 классов. Москва просвещение 2002г Л. С. Атанасян и другие «Геометрия» Пробный учебник для 6 – 8 классов., Москва просвещение 1981г Л. С. Атанасян и другие «Изучение геометрии в 7 – 9 классах.

Отзывы на school-present.com "Применение подобия к доказательству теорем и решению задач" (0)
Оставить отзыв
Прокомментировать
Регистрация
Вход
Авторизация