Портал презентаций » Презентации по Геометрии » Золотая теорема геометрии

Золотая теорема геометрии

Золотая теорема геометрии - Скачать школьные презентации PowerPoint бесплатно | Портал бесплатных презентаций school-present.com
Смотреть онлайн
Поделиться с друзьями:
Золотая теорема геометрии:
Презентация на тему Золотая теорема геометрии к уроку по геометрии

Презентация "Золотая теорема геометрии" онлайн бесплатно на портале электронных презентаций school-present.com

ЗОЛОТАЯ ТЕОРЕМА ГЕОМЕТРИИ Различные доказательства теоремы Пифагора 8 класс * МОУ “Яконурская средня
1 слайд

ЗОЛОТАЯ ТЕОРЕМА ГЕОМЕТРИИ Различные доказательства теоремы Пифагора 8 класс * МОУ “Яконурская средняя общеобразовательная школа” Учитель математики Елекова Эльвира Михайловна Елекова Э.М. Республика Алтай

Золотая теорема геометрии Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его к
2 слайд

Золотая теорема геометрии Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его катетов. Елекова Э.М. Республика Алтай * Елекова Э.М. Республика Алтай

Смотри и докажи! (∆ АВС- прямоугольный равнобедренный) Елекова Э.М. Республика Алтай * Елекова Э.М.
3 слайд

Смотри и докажи! (∆ АВС- прямоугольный равнобедренный) Елекова Э.М. Республика Алтай * Елекова Э.М. Республика Алтай

Смотри и докажи! Елекова Э.М. Республика Алтай * Елекова Э.М. Республика Алтай
4 слайд

Смотри и докажи! Елекова Э.М. Республика Алтай * Елекова Э.М. Республика Алтай

Доказательство Вальдхейма ( по некоторым данным: Джеймса Гарфилда (двадцатого президента США, 1880 г
5 слайд

Доказательство Вальдхейма ( по некоторым данным: Джеймса Гарфилда (двадцатого президента США, 1880 г) Елекова Э.М. Республика Алтай * Площадь трапеции с основаниями а и в, и высотой а+в можно вычислить двумя способами: S= (a+b)2/2 S= 2(ab/2) + c2/2 Елекова Э.М. Республика Алтай

Смотри и докажи, применяя свойства площадей. Елекова Э.М. Республика Алтай * Елекова Э.М. Республика
6 слайд

Смотри и докажи, применяя свойства площадей. Елекова Э.М. Республика Алтай * Елекова Э.М. Республика Алтай

Доказательство индийского математика Басхары Елекова Э.М. Республика Алтай * a b c Достроим прямоуго
7 слайд

Доказательство индийского математика Басхары Елекова Э.М. Республика Алтай * a b c Достроим прямоугольный треугольник до квадрата со стороной, равной длине большего катета b Елекова Э.М. Республика Алтай

Отложим точно такие же треугольники как показано на рисунке. Елекова Э.М. Республика Алтай * Елекова
8 слайд

Отложим точно такие же треугольники как показано на рисунке. Елекова Э.М. Республика Алтай * Елекова Э.М. Республика Алтай

На рисунке есть квадрат, площадь которого равна b2 Есть квадрат, площадь которого равна c2 Елекова Э
9 слайд

На рисунке есть квадрат, площадь которого равна b2 Есть квадрат, площадь которого равна c2 Елекова Э.М. Республика Алтай * Елекова Э.М. Республика Алтай

Квадрат со стороной с состоит из четырех треугольников с катетами a и b и одного квадрата со стороно
10 слайд

Квадрат со стороной с состоит из четырех треугольников с катетами a и b и одного квадрата со стороной b-a Елекова Э.М. Республика Алтай * a b с Елекова Э.М. Республика Алтай

Рассуждения: Большой квадрат состоит из четырех равных прямоугольных треугольников с катетами а и b
11 слайд

Рассуждения: Большой квадрат состоит из четырех равных прямоугольных треугольников с катетами а и b и одного квадрата со стороной b-a т.е. с2=4∙Sтр + (b-a)2= = 4∙(ab/2) + (b-a)2= 2ab + b2 - 2ab + a2 = = a2 + b2 Итак, с2 = a2 + b2 что и требовалось доказать. Елекова Э.М. Республика Алтай * Елекова Э.М. Республика Алтай

Елекова Э.М. Республика Алтай * Повернем треугольник АВС вокруг С на 900 Доказательство Хоукинса Еле
12 слайд

Елекова Э.М. Республика Алтай * Повернем треугольник АВС вокруг С на 900 Доказательство Хоукинса Елекова Э.М. Республика Алтай

Елекова Э.М. Республика Алтай * S САА1 = b2/2 S СВВ1 = a2/2 SAA1BB1 = (a2 + b2)/2 с - общая сторона
13 слайд

Елекова Э.М. Республика Алтай * S САА1 = b2/2 S СВВ1 = a2/2 SAA1BB1 = (a2 + b2)/2 с - общая сторона ∆ А1ВВ1 и ∆ А1АВ1 B1D┴ AB SAA1BB1= (c∙BD + c∙ AD)/2 = = (c∙ AB)/2 = c2/2 (a2 + b2)/2 = c2/2 a2 + b2 = c2 что и требовалось доказать. Рассуждения Елекова Э.М. Республика Алтай

Елекова Э.М. Республика Алтай * Образовательные ресурсы Теорема Пифагора - история, доказательства,
14 слайд

Елекова Э.М. Республика Алтай * Образовательные ресурсы Теорема Пифагора - история, доказательства, применения. http://th-pif.narod.ru/index.htm Сайт учителя Шапошникова И.М. Геометрия. http://moypifagor.narod.ru Теорема Пифагора. http://th-pif.narod.ru/formul.htm В. Литцман Теорема Пифагора. http://ega-ath.narod.ru/Books/Pythagor.htm Елекова Э.М. Республика Алтай

Отзывы на school-present.com "Золотая теорема геометрии" (0)
Оставить отзыв
Прокомментировать
Регистрация
Вход
Авторизация