Теорема Пифагора 8 класс
- Рубрика: Презентации по Математике
- Просмотров: 407
Презентация "Теорема Пифагора 8 класс" онлайн бесплатно на портале электронных презентаций school-present.com
Теорема Пифагора Цели: познакомить учащихся с жизнью ученого Пифагора, изложить теорему Пифагора, отработать ее на простых задачах; познакомить учащихся со старинной задачей
ПЛАН 1. Повторение 2. Историческая справка 3.Доказательство теоремы Пифагора 4. Решение задач (по готовым чертежам) 5. Старинная задача
1.Начертить прямоугольный треугольник. 2. На сторонах треугольника построим квадраты. Практическая работа.
1. Найдите площадь каждого квадрата. S1=42=16 S2=32=9 S3=52=25 2. Найдите сумму площадей квадратов, построенных на катетах и сравните с площадью квадрата, построенного на гипотенузе. S1+S2=S3 4 3 5 S1 S3 S2
Вывод: Площадь квадрата построенного на гипотенузе прямоугольного треугольника равна сумме площадей квадратов, построенных на катетах.
Теорема Пифагора во времена Пифагора теорема была сформулирована так: «Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах»
Теорема Пифагора современная формулировка: «Квадрат гипотенузы равен сумме квадратов его катетов» Дано: АВС-треугольник, С=900, а,в-катеты, С-гипотенуза Доказать: с2=а2+в2 А В С с а в
Начертим прямоугольный треугольник со сторонами а, в, с. Достроим треугольник до квадрата со сторонами а+в. Найдем площадь этого квадрата S=(а + в)2 а с в в в в а а а Доказательство:
С другой стороны SABCD=4Sтр +Sкв Sтр= ав; Sкв=c2 SABCD=4* ав+с2=2ав+с2 (а+в)2=2ав+с2 а2+2ав+в2=2ав+с2 а2+в2=с2 ч.т.д. а в с А В С D а а а в в в с с с c c c c
Решение задач Составьте по рисунку, используя теорему Пифагора, если это возможно, верное равенство Х2=32+42. Вычислите чему равна гипотенуза? 5 Этот треугольник называется египетским.
Можно ли применять теорему Пифагора к этому треугольнику? Нет. Так как этот треугольник не прямоугольный
Итак, вопрос: На что надо обратить внимание при применении теоремы Пифагора? Чтобы использовать теорему Пифагора, надо убедиться, что треугольник прямоугольный.
Старинная задача «На берегу реки рос тополь одинокий Вдруг ветра порыв его ствол надломал. Бедный тополь упал. И угол прямой С течением реки его ствол составлял. Запомни теперь, что в том месте река В четыре лишь фута была широка. Верхушка склонилась у края реки Осталось три фута всего от ствола, Прошу тебя, скоро теперь мне скажи: У тополя как велика высота?»
Дано: АСД, А=900 АС=3 фута, АD=4 фута. Найти: АВ. Решение АВ=АС+СD. По теореме Пифагора CD2=AC2+CD2, СD2= 9+16 CD2=25, СD=5. АВ=3 +5 =8(футов). Ответ: 8 футов.